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CCAR projects & cores

=CCAR
Project 1 Project 2 Project 3
roadway exposure exposure atmosphere toxicology
characterization generation
M Campen (PI),
M Yost (PI), T Larson, J McDonald (P1), M Rosenfeld, J McDonald
C Simpson, T Jobson, T Larson
T VanReken
Project 4 Project 5 Project 6
human clinical studies epidemiology cohort multipollutant exposure
study modeling
J Kaufman (PI)
J Kaufman (PI), S Vedal, L Sheppard (PI),
C Curl A Szpiro, P Sampson

Biostats Core

Admin Core
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Since we last met:

1. responses to SAC review

1. Clean Air Research Centers (CLARC) and CCAR

meetings/seminars:
o EPA center webinar, March 2013 — M Yost & T Larson
(project 1)
o Scott Fruin (UCLA) visit and seminar, Seattle May

2013
* Planning annual meeting Seattle, July 2013 — highlights

+ collaborative projects
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Since we last met:

3. Projects
« P1-LosAngeles x 2 seasons; South Seattle pilot

study; LRRI chamber analyses (with P2)
o P2 —irradiation chamber refinements
 P3-new endpoints and collaborations
P4 —1to be discussed, again
 P5—In transit monitoring — pilot studies and
neating season in Winston-Salem
* Biostats Core — sparse PCA CSN data;
measurement error correction methods applied to

Sister Study
I
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overview (selected) of SAC comments:

e overarching hypothesis?

 Integration of mobile and chamber characterization
data, and with experimental and observational
exposures

 distinguishing roadway pollution from other sources

e more sensitive toxicologic endpoint(s)

» scripted study — prefer crossover study

o drop use of “eigenpollutant”; keep in mind spatial
scales of contrasts
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SAC Input especially on:

1. reactions to early findings and approaches:
 mobile and chamber monitoring (project 1)
e tox models/endpoints (project 3)
e In-transit exposures (project 5)

project 2 exposure atmospheres

project 4 — what now, again?

4. Biostats core — approaches to dimension reduction
and measurement error correction

5. collaborative projects

g
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Outline of today’s activities

1. Individual project reviews, updates, discussions
* Biostats Core |
e Projectl

[LUNCH] with posters in R2228

e projects 2, 3and 4
[BREAK]
 Projectb

* Biostats Core 1|
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Today contin.

2. Cross-center collaborations
3. General discussion
[DINNER] at Foege Hall

Tomorrow’s activities

1. SAC closed meeting
2. SAC report and discussion
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UW CCAR - Project 1 work In progress:
Developing multi-pollutant features of

traffic emissions with mobile monitoring
CLARC/SAC meeting, July 23-26, 2013

Investigators: Michael Yost, Tim Larson, Chris Simpson, UW,
Tom Jobson, Tim VanReken, WSU



University of Washington
Center for Clean Air Research (CCAR)

Project Aims

1. Near-roadway gradients exist in traffic-associated air pollution,
and these gradients can be measured using an assortment of
gas and particles sensors deployed in a moving vehicle.

2. Air pollutant measurements collected at “fuzzy points” on
multiple occasions over short time periods using a mobile
monitoring platform efficiently capture spatial variation in
pollutant concentrations, and are well correlated with two-
week integrated measurements collected at those same fuzzy
points, and can be predicted using GIS spatial co-variates.

3. Measure spatial variation in concentrations of selected air
pollutants at two-week average fixed sites



Outline of talk

Background on mobile sampling campaigns
Measuring near-roadway gradients (Aim 1)
Analysis of time-series multi-pollutant features
Multi-pollutant analysis at fuzzy points (Aim 2)
Next steps



Instrument Platform

Parameter Instrument

Particle Light Scattering Coef.

Radiance Nephelometer M903

Particle-bound PAHs

EcoChem PAS 2000CE

Ultrafine Particle Counts

TSI P-Trak Model 8525

Black Carbon +
Ultraviolet Abs. PM (UVPM)

Magee Scientific microAeth AE52

31 Sizes of Particle Counts
Total Number Concentration

Mean ultrafine Particle Diam.

GRIMM 1.109 spectrometer +
GRIMM NanoCheck 1.320

Nitric Oxide (NO)
Nitrogen Dioxide (NO,)

2B Technologies 410 -NO
Aerodyne CAPS NO, Monitor

Oxides of Nitrogen (NO,) 2B Technologies 410 w NO,
Ozone (0,) Optec Chemiluminescent
Analyzer

Carbon Monoxide (CO)

Langan CO Monitor T15N

Volatile Organic Compounds

Inficon 2020ppb Photoionization

(VOCs) Detector
Carbon Dioxide (CO,) Senseair CO, K-30-FS Sensor
Visual Route Record WebCam
Real-Time Positioning Garmin GPS




Project 1: Sampling Schedule

Activity Est. Begin Date Est. End Date Ysial\erc\),f Location - New
Pilot Testing of Mobile system 8/15/11 11/15/11 1 Seattle, WA
Field Sampling, City 1 (Heating) 11/29/11 12/20/11 1 St. Paul, MN
Field Sampling, City 2 (Heating) 2/5/12 2/25/12 2 Baltimore, MD
Characterization of LRRI Exposure Atmospheres 4/16/12 5/17/12 2 Albuquerque, NM
Field Sampling, City 2 (Non-Heating) 6/8/12 6/30/12 2 Baltimore, MD
Field Sampling, City 1 (Non-Heating) 7/25/12 8/15/12 2 St. Paul, MN
Field Sampling, City 3 (Heating) * 1/3/13 1/23/13 3 Winston-Salem, NC
Field Sampling, City 4 (Heating) 2/5/13 2/25/13 3 Los Angeles, CA
Field Sampling, City 4 (Non-Heating) 6/15/13 6/30/13 3 Los Angeles, CA
Field Sampling, City 3 (Non-Heating) * 8/1/13 8/20/13 3 Winston-Salem, NC
Characterization of UW Exposure Atmospheres 10/1/13 10/15/13 3 Seattle, WA
Sampling with GT CLARC Instrumentation 9/1/13 9/20/13 3 Atlanta

* Passive only



Monitoring Campaign Data

* Two Data sources:
PASSIVE — Passive samplers (2-week averages)

MOBILE |— Mobile data (30s & ~15 min.; time-corrected)

* 3 Mobile Routes
— One fixed route, 2-7 pm (evening commute)
— All routes time adjusted to central fixed site
— 15 Fuzzy points per route (43 total)
— Fuzzy points coincident with passive samplers



Mobile Platform Collection
Traffic Intersections as “Fuzzy Points”

* Measure pollutant marker (e.g. o) = == c
at selected traffic intersections
during peak afternoon traffic period
E C
« Trace a cloverleaf / figure 8 at each ] K
Intersection (~5-8 minutes); repeat
* Adjust the observed readings using | ul s )
fixed site data - ' )
|

o Calculate the median of the adjusted
readings for each pass through a
fuzzy point campaign

Observed 10-sec reading from mobile x Campaign median from fixed

Adjusted Reading =
! 5 30-min moving median from fixed



Fuzzy Points - Detail Maps
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~ Alameda,

Roadway Gradient Analysis

Las Ranchos de*
Albugquerque

e SACrecommended a
“detailed spatial/road and
traffic source characteristics ;B
information”

e Developed alternative
mobile sampling scheme to
assess near-roadway o B

pollutants
* Implemented this approach-» - "
in all cities Gradient

: =l sSite
e Analysis of initial test data

from Albuquerque

Aim 1




Gradient Sampling Data

7 sequential days (April 18 — 24, 2012)
Evening commute timeframe (3 — 7pm)

Roads traversed at least two times per
sampling day

North and South gradient sites
spanning 30 to 500 m from |-40

10 second measurements .

Road 2 (Summer) [
— Road 1 (Winter)
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Dichotomized Dispersion Analysis

Generated NOx dispersion
maps w AERMOD View 8.2;

EPA MOVES 2010b Emissions
& NMDOT hourly traffic counts

Dominant North Dispersion
(April 18, 20 and 22)

Symmetric Dispersion
(April 19, 21, 23 and 24)
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Black Carbon (ng/m3)
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Black Carbon by Dispersion Type

North Side

|
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——@&—— Symmetric Dispersion ——@&—— Dominant North Dispersion

- Product of incomplete combustion of fuels
- Elevated black carbon concentrations observed downwind of interstate
- Baldauf et al. (2008) observed a similar trend: 20 meter location was 1014 ng/m?3

200 meter location was 824 ng/m3



Ozone

80

Ozone by Dispersion Type
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——@&—— Symmetric Dispersion —@®—— Dominant North Dispersion

Ozone undergoes consumption from NO on interstate (NO + 0; —» NO, + 0,)

Elevated ozone for symmetric dispersion consistent with stagnant meteorology
EPA AQS Site average concentration of 59 ppb
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P-Trak Ultrafine Particle Counts by Dispersion Type

2500

Ultrafine Particles (P-Trak)

Particle Counts (particles/cm3)

- Size selective diffusion screen used
| (0.05 -1 pm)
) - Approx. 1.7 times higher downwind
g | than upwind
) - Hagler et al. (2010) observed a similar
g |soms trend - 1.8 times higher within the 20 to
a0 aw -15°Distange o .mlé’gtate fﬁ’g)) w5 150 m downwind region than with
—e— Symmerrc Dispersion  ——e—— Dominant North Dispersion background ultrafine particle counts

GRIMM Total Particle Counts (0.025 — 0.3um) by Dispersion Type

South Side H H North Side

15000

10000
I

Ultrafine Particles
(GRIMM Nanocheck)

1

5000

Particle Counts (particles/cm3)

o -

-400 -300 -200 -100 0 100 200 300 400 500
Distance to Interstate (m)

——®&—— Symmetric Dispersion ——@&—— Dominant North Dispersion




Nitrogen Oxides (NOx) by Dispersion Type

Nitrogen Oxides
| | (NOx = NO + NO)
2c - Instrument baseline
| offset/interference from hydrocarbons
| - Relative change indicative of the
iy G S L dispersion process
-400 -300 -200 -100 0 100 200 300 400 500 . .
Distance to Interstate (m) - EPAAQS Site average concentration
’—0— Symmetric Dispersion ——@&—— Dominant North Dispersion Of 6 4 ppb
Nitric .Oxide (NO) by Dispersion Type
gaﬁ . o .
? Nitric Oxide
P N

Distance to Interstate (m)

—@&—— Symmetric Dispersion —@&—— Dominant North Dispersion




Analysis of mobile 10 sec. data

e Can we extend the single component analysis
to the multivariate data?

e How to interpret the multivariate features?
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Black Carbon time-series graph
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South Seattle Pilot Measurements
9/25/12 from ~ 2PM to 7PM
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160 240
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Multivariate Time-Series Analysis

South Seattle Pilot Study Data
Measurements taken on 9/25/12 from ~2PM to 7PM

Tested multivariate correlations between simultaneously
measured species concentrations

Performed simple variable reduction method on
simultaneous 10-second data

Used Principal Component Analysis with Varimax rotation
75% of variance represented by 5 orthogonal factors



RC1: High Nitrogen Oxides and Low Ozone Concentrations

(Diesel @ Ioad) 21% of total
observed variance

1.000

0.800 -
Factor 0.600 |
correlation o400 - I
with given 020 - I I
g- 0.000 - . [] — : .

Species

0.200 Ox UVPM Hﬁ co2 Ptrak bsp co 0204045101330 3.5-10

-0.400

-0.600

-0.800

6.000

Relative
Factor oo
Contribution ..

10 second sample # E: Truck passing uphill
F: In uphill traffic

G&H: Roadside next to uphill traffic
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RC2: High Black Carbon and Particle Number Concentrations

(Diesel SOOt) 19% of total
observed variance

Factor
correlation
with given
species
m n —
WS 9
\?’H »?
Relative
Factor 6 000
Contribution A: Atred light behind truck
0.000 7 B: Behind truck under freeway
TN MehRorNmedamIn8R )
5.000 “=-—-=-<=<  C: Following school bus
D: At red light behind school bus

10 second sample #



RC3: High Larger Particle Concentrations

1.200

1.000
Factor
correlation
with given
species

0.800

0.600

0.400

0.200

0.000

-0.200

40.000

18% of total observed
variance

Al

0.2-0.4 0.45-1.0 1.3-3.0 3.5-10

(PM Rich)

P-trak

o e W
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20.000
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K

. . 15.
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5.000

J: sample inlet adjusted in field
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-5.000

K: behind school bus

N

L: dust plume from off road truck

10 second sample #



RC4: High VOC and CO correlation

(light duty vehicles) 8% of total observed
0.800 :
variance
0.600
Factor 0
correlation o200 I
with gl_ven R ' ' ' N PUTUA
Species NO UM voc  co2 P PAH  CO 0.I.4 0.45-1.0 1.3-3.0 3.5-10
-0.200

-0.400

. next to minivan uphill
cold start vehicle
pickup truck

industrial site (no CO)
residential street
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Factor
correlation
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Relative
Factor
Contribution
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1.000

Particle-bound PAHs
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Analysis of 2-week Fuzzy Point Data

e How do we use all the mobile data over a 2-
week measuring campaign in a city?

e Can we combine the passive badge data with
the mobile data?

e Are there multivariate features?



Baltimore Heating Season

* Previous approach: univariate analysis
— Mobile data time-series with spatial reference site

— Univariate 10-sec. values time-adjusted relative to
fixed site over all routes for the 2-week sample period

e Segmented to data into fuzzy points

e Extracted 2-week medians for each pollutant
— Plotted medians as Tertiles (High = Low)
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Preliminary multivariate analysis of
Baltimore fuzzy point data

e Build on the previous univariate analysis

— Use time-adj. mobile data at fuzzy points;

e Extracted mobile campaign medians for each
pollutant at each fuzzy point;

e Combined mobile medians with passive badge
data from the same points;

 Performed PCA analysis, plot loadings and scores

Aim 2



Data Iinputs: passive + mobile data (2-week)

O3 by-product polutant Enriched In
Diesel Exhaust (DE)

vs Gasoline Exhaust (GE)

NO2 vehical emissions

NOy Decane | |Nonane -
SO2* - Undecang jo-Xylene

* not detected

. Mobile Platform Addition - DE & GE

Time-adjusted medians GE / biogenic /
, . ||Pentane| o 4norative
' INO, NO, NO S
: Isoprene biogenic/
aged aerosol

exhaust /
biomass smoke

rorens
Berzee|




Principal Components: Scree plot

PCl PC2 PC3 PC4 PC5 |PC6 PC7 PC8
SS loadings 6.88 2.55 2.46 2.07 1.30|1.06 0.90 0.65
Proportion Var [0.34 0.13 0.12 0.10 0.06| 0.05 0.05 0.03
Cumulative Var |0.34 0.47 0.59 0.70 0.76|0.82 0.86 0.89

o]

Keep 5: 76% variance

Loadings

Principal component number
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Annual average daily weekday traffic (x 1000)

RC 1 _
08 | 5 5e: Light Duty? ~028-98
06 | L Le ———— 98-21
02 I.g IIII ll‘g 2 88 -- 2011 truck traffic: Class 4-13 21- 40
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RC 4 ] Annual average daily weekday traffic (x 1000)
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Next steps:
PCA analysis - moving forward

Examine univariate time adjustments to the 10 sec data
— (What time adjustment is needed? Alternative — smoothing?)

Segmenting data into fixed spatial buffers around the
fuzzy points (FP-subset);

Performing PCA analysis of FP-subset to extract factors;
— Robust/ Sparse PCA; joint PCA w spatial splines etc.

— ldentify sources from PCA factor loadings (video info);
Combine PCA scores w LUR to assess spatial structure;

Work with Biostatistics Core to perform additional
analysis of the time-series data set (see posters)



Conclusions

- Observed pollutant gradients within the first 100
meters downwind of major roadway

- Achieved temporally and spatially resolved
measurements of multi-pollutant mixtures

- Observed multivariate features of traffic-related and
secondary pollutants at fuzzy points

Provides us with a better understanding of how to
characterize multi-pollutants for future studies



Thank You!

jvi N CENTER FOR CLEAN AIR RESEARCH
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Simulated Roadway Exposure
Atmospheres for Laboratory Animal
and Human Studies
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Objectives

o Simulate ambient exposures in the laboratory

— Bridge these exposures to ambient
measurements/modeling (Project 1)

o Compare toxicity of exposures

— Use these results to determine mechanisms
(Project 3) and to define priorities and
atmospheres for human exposures (Project 4)



Principle Activities Since Last ESAC !ﬁ

I voloro
LOVEIdGE

o Refinement of approaches to Irradiation Chamber Studies with Motor Vehicle
Exhaust

— Key challenge: modulation of NOX:VOC:PM ratios with minimal particle loss
— Key challenge : Conduct of long-term studies with constant atmospheres

o Assay development/analysis for short term determination of cardiovascular
response and chemical drivers (Project 2-3 collaboration)

o Review of Project 1 Data to help inform atmosphere decisions

o STATUS: This past year we have made significant advances in the bioassays to
enable reproducible, mechanistic based acute assays for screening of test
atmospheres. This has been completed, and next steps are to screen new
atmospheres. Focus this past year has been MVe and ozone studies



Key /nitial Research Questions

e Does agglomeration and physical transformation of particulate motor
vehicle emissions alter their toxicity (does size matter)?

— COMMENT: tabled due to feasibility and other priorities

e Does chemical transformation, and formation of secondary organic
aerosol from motor vehicle emission precursors, enhance or diminish the
toxicity of roadway atmospheres?

— COMMENT: delayed due to other priorities. Initial challenges
observed. This has been overcome by technical approach to get
irradiation chamber to work and to develop acute sensitive assays for
comparisons.



Key /nitial Research Questions

e Do ozone and other background co-pollutants alter or exacerbate the
toxicity of motor vehicle emissions?

— COMMENT: Campen has been characterizing response to ozone and
this year also to MVe mixtures. We have not conducted a
‘background’ atmosphere as originally described. This is on-going

e Does road dust, a significant non-tailpipe roadway emission, confer any
cardiovascular toxicity that may confound associations with tailpipe
emissions?

— COMMENT: we are including a road dust atmosphere alone and in
combination for new trials with acute assays



Additional Goal: Bridge Atmospheres to
Project 1

o During the past year, the analysis from the Albuquerque
campaign from Project 1 was completed.

e Those results are defined here for review

¢ These are being considered to utilize for the following
atmospheres:



Traffic Transect Study from Project 1

North Gradient
Road 11 (Childers)
Road 10 {Field)
Road 2 (Lester)
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Road 5 (Service Road | RS,
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Results by Date (Example): NO

South Gradient Ozone to NOx Ratio by Road and Day
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Outcome of analysis

o The gradients are not as large as one would like to tease out potential
differences in biological response (the delta is actually pretty small)

— Considering this:

> How do we use monitoring data to create exposure
atmospheres?

> |s utilization of these data better then a default approach?

. . . 100m 500m 1km 2?

Background + Traffic Emissions - » Exposures
. Distance From Roadway

0,, (NH,),S0,, Tailpipe,

NH,NO,,VOC, Evaporative,
NI, V Tire & brake,
Resuspended Dust

Chemical
Transformation
OH,
Sunlight

Aging

Nucleation,
Agglomeration




Next Steps, Considering Prior Information

> Feedback from SAC appreciated

o Default: MVe combinations with/without particles and
gases and NOx permutations has been focus to date

e New and on-going studies to continue to investigate MVe
carbon/gas ratios and also to include:

Road dust (Urban composite)

MVe -Nox + Ozone (two different NOx/0Ozone
Gradations and two different Mve degradations

MVe + SOA

Urban background at same PM: Ammonium
nitrate/ammonium sulfate, road dust; with and
without ozone at same level of MVe



Other Updates

20 2 4 ﬁﬁm Part of center investigation was
looking back further into data analysis

«um Of road dust. We presented that last year.
e These data are now in press at AQAH

Copper

... 1 additional manuscript submitted and
sin 2 10 be submitted next month on initial
~mnm ASSAYS With MVe and ancillary mixtures

Chromium




Project 3: Cardiovascular Consequences of Immune
Modification by Traffic-Related Emissions

Campen, Rosenfeld, Lund, McDonald




Project 3 Aims

e Aim 1, we will ascertain the potentiating effects of physical
and photochemical aging on fresh emissions, in terms of
driving this vascular oxidative stress.

In Aim 2, we will examine effects of the emissions-induced
oxidative modifications to endogenous phospholipids, in
terms of activating immune-modulating receptors such as
LOX-1, CD-36, TLR-2, and TLR-4.

 Aim 3, we will further explore the role of specific immune
cell populations as participants in the innate and adaptive
responses to emissions-induced phospholipid
modifications.




Comments on Progress for the Past Year

e Because the photochemical transformations
led to a dynamic atmosphere, chronic
exposures would be challenging to
conduct/analyze

— Necessitated a move to more acute outcomes

e But still consistent with chronic vascular disease
pathogenesis

* Emphasis from SAC to explore the bloodborne
vasoactive factors




Hypothesis: Chemical modification of phospholipids
nm{/arﬁmteins leads to altered biological signaling

Exogenous Toxicants

Specifically, we

suspect that reaction
by-products from the

lung enter the

circulation to drive

endothelial cell Y=-0, -oH
aCt|Vat|0n V|a Ce” Z= choline, inosital, -H, etc
surface receptors,

especially pattern

recognition receptors

such as CD36,

TLR4, and LOX-1




Evidence that the signal is blood-borne:

Plasma from humans
exposed to NO,, Diesel,
or filtered air (control)
for2 h

Incubated with primary
human coronary artery
endothelial cells at 10%
in media

VCAM mRNA Fold Induction

Plasma after exposures
induced ICAM, VCAM,
P-selectin and IL-8

Channell et al., Tox Sci, 20125




Serum from Ozone-Exposed Rats
Impairs Vasodilation Ex Vivo

o PPM O3 X 4h in rats, serum -®- Naive Coronary + 10% FA Serum (n=7)
har‘vested 24h-post - Naive Coronary + 10% O3 Serum (n=8)

Infusion of a dilute (10%) ser 5_%
in the lumen of isolated coronary

arteries leads to impaired
vasodilation / + +
I
No effect of serum from air- /
/
exposed rats (control) %

I
I

ﬂ /
s s, -y
[ ;

v‘ y . v'_‘_’; ) -’

log [,-A\Ch]




None of the Changes Appear to be “Usual
Suspect” Cytokines

200+ 40001

Cytokines do not seem to be _ -
relevant

— GM-CSE IL-10, RANTES all BDL | " uo

20004

IL-1B (pg/ml)
IL-6 {(pg/ml)

Studies that show increased
circulating cytokines are either

— Very high concentrations

TNF-c. (pg/ml)

w,
(=]
GROIKC (pg/ml)

RANTES (pg/ml)

— Instillation

0- 0- 0-——
FA Ozone FA Ozone FA Ozone

— Increases are modest, not
physiologically significant

(=]

(=]

(=]
1

MCP-1 (pg/ml)
3
2

Eotaxin (pg/ml)
IL-10 {pg/ml)

N
(=]
i

o i 0'—1—1'—
FA Ozone FA Ozone FA Ozone




* After O; exposure, 1,480 unique
changes were identified in rat
serum in the <5kD fraction

We propose that oxidative

modifications of endogenous
molecules leads to reactive
epitopes for Pattern Recognition
Receptors

Courtesy Andrew Ottens, VCU




Hypothesis:
Pollution Induces Molecular Shrapnel

Reactions of air pollutants in -

. FA O
the lungs create reactive ik
intermediates 100kDa’

— DAMPs, AGEs, Hyaluronan
Fragments, 4-HNE 50kDa-'

Intermediates adduct onto or
modify existing endogenous 37kDa
proteins o LI

Air Ozone

[ |
Modifications are recognizable 25kDa 4-Hydroxynonenal Adducts
epitopes for Pattern

. Scavenger/Pattern
Recognition Receptors M [@ M Recognition Receptors
Adhesion molecules

q Chemokines
p )
Endothelium roteinases

NOS inactivation

Arb.ii.rary units (AU)




1 ppm O3 x 4 h, harvested
aortas 24h post-exposure

Female C57 mice, ~8-16 wks old
paired with CD367- mice

Force-tension myography on
aortic rings

4 CD36" FA
o

Preconstricted (U46619), then ¥ CD36™ O,

relaxation to acetylcholine

assessed

=
IQ
]
©
>
S
Q
-
o
(7]
©
>
=]
o~

860
Robertson et al, Tox Sci, 2013 9 -8 -76-7 -66-6 -55 -5

log [ACh]




CD36-Deficiency Also Protected
Against Pulmonary Inflammation

e Significant reduction in
O3-induced
macrophages and
neutrophils in CD36-null
compared to WT

o))
o

H WTFA

1 CD36-/- FA

] WT 1 ppm O3

B CD36-/- 1 ppm O3

B
o

E
w
o
2
t
=
o 20
@
(& ]

* Not a caveat —
Macrophages Neutrophils Other

an OPPORTUNITY!!




Using Homologous Serum Assays with
Ex Vivo Aortas...

 Naive WT aortas treated with 2.5% serum from CD36-null mice
recapitulated O3-induced vascular impairments

e Serum modifications are independent of CD36 AND pulmonary
inflammation!

e (CD36 on aortas mediates response to serum factors!

% Vasorelaxation

0_

<©

A

Log [ACh]

CD36-/- Serum
1 ppm O3

WT Serum
1 ppm O3

CD36-/- Serum
FA-Exposed

WT Serum
FA-Exposed

% Vasorelaxation

O_

CD367

Log [ACh]

WT Serum
FA-Exposed

CD36-/- Serum
FA-Exposed

WT Serum
1 ppm Oy




Pattern Recognition Receptor CD36 Role in
Mediating Ozone-Induced Vascular Outcomes

Pulmonary | ation may
SRR AR
?é‘ﬂéﬁéé%’f’ 6@&9%@0 03

Pulmonary Inflammation

factors' ‘L \L
CD36 is NOT needed for generation
of circulating vasoactive factors + +  Serum Factors

Vascular CD36 is

needed for the Compromised
response to O3- Vasodilation
induced vasoactive X

factors

. 13
Robertson et al, in prep




Do Alveolar Macrophages Have a Role
in Scavenging By-Products?
Alrways Circulation

-

: Circulating y 4
O,+ surfactant
3 CD36 Ligand CD36 Ligand w

Endothelial Activation

Scavenging by
Macrophage




Activation of Microglia is most pronounced with
serum from CD36-null mice

Michelle Block, VCU
* Preliminary findings of O, 40 1 b D3s

induced neuroinflammation |_3-5 B CD36 -/-
suggest that expression of

TNFa in the brain of CD367-

mice is enhanced compared '
to WT i
A

Ozone




Are serum factors playing a role
with complex mixtures?

ApoE”- mice on high fat diet (8 weeks old,
male)

Exposed 6h/d for 50d to:

— MVE (300ug/m3)
— MVE minus PM
— MVE minus gases

— Filtered Air Control
Serum used for ex vivo vascular myography

Aortas sectioned for immunohistochemistry

16
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MVE Induces No Pulmonary Inflammation,
Assessed by Bronchoalveolar Lavage
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BALF LDH Activity




MVE Induces MMP9 Protein Levels,
Reduced by Filtration/Denudation
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CD36 Unchanged
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Further Exploration on Bioactivity in
Serum: Inflammatory Markers

Rats, O3, 1ppm x 4h Mice, MWCNT, 40 ug IT
30 400-

] 10% in Media 20% in Media
*

| ——|

|

*

©
(&}
c
o
O
0
c
o
>
[
c
S
0
=
=
<
)
>

VCAM Surface Expression




Nitric Oxide Generation and Scavenging by
Electron Paramagnetic Resonance

NO Generation in Murine Scavenging of NO (Spermine
Endothelial Cells NONOate) in Acellular Assay
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Getting back to actual Aims

* Now have approval at LRRI to conduct a series
of 1-day exposures to MVE and related
mixtures in rats and mice, to assess relative
serum inflammatory potential changes.

e Can also consider treating circulating
monocytes with serum and looking for
priming and adhesive effects

— Readily move to TLR/CD36/LOX-1 knockout mice
for cells




Serum Compositional Changes:
Summary

* Bioactivity
— Impairs ACh-mediated vasodilation
* Reduces NO generation, scavenges free NO

— Induces battery of inflammatory responses

* Increased surface expression and mRNA for VCAM, ICAM, mRNA and
release of IL-8

— Macrophage activation -

— TBD: Endothelial Barrier Integrity
e Common responses induced by

— Ozone, MVE, MWCNT, graphene, nitrogen dioxide, diesel -
e Compositional analysis indicates

— No cytokines altered
— 1500 other things — fragments and adducts




F A CENTER FOR CLEAN AIR RESEARCH
CCAR

— UNIVERSITY of WASHINGTON

Center for Clean Air Research

Project 5. Effects of Long-Term Exposure to
Traffic-Derived Particles and Gases on
Subclinical Measures of Cardiovascular
Disease Iin a Multi-Ethnic Cohort

Pl: Joel Kaufman




AIms

O

e Aim 1: To build a multi-pollutant exposure model for
traffic-derived air pollutants for use in epidemiological
analysis

e AiIm 2: To determine the effect of time-in-transit on
personal exposure in this cohort

e Aim 3: To estimate the effect of individual-level

exposure to traffic-derived air pollution on subclinical
cardiovascular disease in MESA Air




Current Focus iIs on Field Work

O

e Aim 1: To build a multi-pollutant exposure model for
traffic-derived air pollutants for use in epidemiological
analysis

e AiIm 2: To determine the effect of time-in-transit on
personal exposure in this cohort

e Aim 3: To estimate the effect of individual-level

exposure to traffic-derived air pollution on subclinical
cardiovascular disease in MESA Air




Focusing on In-Vehicle Exposures

O

e Studying actual travel patterns
GPS trackers and proximity sensors provide gold standard

Can be combined with more specific self-reported time-
location diary data

Can then be compared with data acquired for summer and
winter from the MESA Air Questionnaire

* Measuring concentrations of TRAP in vehicles
Goal to determine importance of the in-vehicle “compartment”

Determine whether we need to add an in-vehicle component
to MESA Air individual exposure model




Monitoring Campaign

e Two-week duration

» Sample ~50 participants in each of two cities (Winston-
Salem and Los Angeles) in each of two seasons
February 2013 (Winston-Salem) and January 2014 (LA)
August 2013 (Winston-Salem ) and June 2014 (LA)

» Location logging

GPS tracking unit

Proximity monitor

Self-reported time-location diary
e Passive monitoring

Ogawas
Organic Vapor Monitor




Passive monitoring

O

* Personal monitoring plus three “compartments”
Indoor
Outdoor
In-venhicle

* In-vehicle monitoring set up Is portable

Participants asked to take it with them if they travel in other
personal vehicles

Participants asked to open and close lid at beginning and end
of their trips

Also includes a proximity sensor, a timer, and a temperature
and humidity logger




Project 5 Schedule

O

Winston Winston

-Salem -Salem

Heating Non-
Heating

Dec-12 Feb-13| Apr-13 Jun-13 Aug-13 Oct-13 Dec-13| Feb-14 Apr-14 Jun-14 Aug-14 Oct-14

Pilot Pilot Los Los

Study 1 Study 2 Angeles Angeles
Cool Warm




Primary Questions for Pilot Studies

O

e How much time do
participants need to
drive?

* Which analytes are most
likely to provide useful
iInformation in the full
study?

* How reproducible are the
samples?




Pilot Studies

O

 Pilot Study 1
December 2012 in Seattle
10 samples and 10 duplicates

 Pilot Study 2
March 2013 in Seattle
16 NO,/NO,/SO, samples and 22 VOC samples

e Results

30 minutes of driving time per day is sufficient for achieving
detection limits for most agents of interest

Generally high reproducibility in duplicate samples




Pilot Studies: Chemicals Detected by Driving Time

O

Pentanes|n-Nonane | n-Decane |n-Undecane|n-Dodecane | Benzene |Toluene/m-Xylene|o-Xylene| NO, | NO,
30 min/day | e o ° ° ° @ ° ° ° e | O
45 min/day | e ® o ° 0 @ ° ° ° ® | O
>45 min/day| e ° ° ° o o ° ° ° o (o

® Detected in all

samples

O Detected in some but not all samples
*Isoprene, SO,, and ozone were not detected in any samples*




Pilot Studies: Duplicates

O
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Pilot Studies: NO, and NO, vs. Time Driving
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Pilot Study 1: Comparison to Literature Values
1000

T

> 100

2
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Benzene Toluene NO2 total xylenes
@ Pilot- driving avg  ® Los Angeles m Raleigh B New Jersey ® New York City
m Raleigh - urban m Raleigh - suburban m Raleigh - rural Boston
Data from: Chan et al. (1991a,b), Fedoruk & Kerger (2003), Lawryk & Weisel (1996), Riediker et al. (2003)




Winston-Salem Heating

O

e January 27" through February 21st
» 46 participants (96% of goal)
» Maliled results letters in early July




Winston-Salem Heating: Participant Demographics

Category Project 5 W-S Cohort at Exam 5
Number Percent Number Percent

Gender
Male 21 46% 348 46%
Female 25 54% 415 54%
Race
White, Caucasian 20 43% 413 54%
Black, African-American 26 57% 348 46%
Age Group*
45-54 1 2% 8 1%
55-64 9 20% 236 31%
64-74 18 39% 256 34%
75-84 15 33% 215 28%
85+ 3 7% 48 6%
Median Age* 72 70
Age range* 54 - 89 54 - 93
*at exam 5




Driving Time (hours per week)

O

Questionnaire Time Diary
Range 0-64 1.3-18.1
Mean = std dev 8.7+ 10.2 7.1+4.0
Median 7.0 6.6
95t Percentile 16.8 14.1




O

Winston-Salem Heating: Number of Samples

Number Duplicates (% of
of samples samples
deployed deployed)
Indoor 46 11 %
Outdoor 46 9 %
Vehicle 46 9 %
Personal 46 --
Number of Field Blanks (% of
samples samples
deployed Deployed)
Total Samples 184 9 %




Winston-Salem Heating: GPS

O

e Over 50% of the units ran the whole study period
» Over 80% of the units ran for at least 1 week

e Only 1 unit did not run at all

e Conducted extensive testing — confident that we will
have more complete data in the next field campaigns




Example Map

USA Major Roads
Road Classification

== Freeways
— U5 and State Highways
— Other Major Road
— Secondary Road
—Local Connecting Road
Important Local Read
[Parks
Lakes, Rivers, Streams




Example Map — Close-up
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Improvements to Sampling Procedures

O

o Simplified Time Diary format

e Lighter personal monitor

* “Do’s and Do Not’s” Sheet for participants
* GPS units fixed




Summary

O

* Implemented novel sampling equipment and study
design

e Successfully completed our first field campaign and
start our second campaign next week

* Results so far suggest that the highest exposure
concentrations occur in vehicles




Project 5 Schedule

O

Winston Winston

-Salem -Salem

Heating Non-
Heating
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Biostatistics core overview of activities

 Project 1 data analysis and cleaning
e [nter-center collaborations (UW, Harvard, Emory/GT)

m) - Multi-pollutant methodology for cohort studies with
misaligned monitoring data



Multi-pollutant methodology
e Goal: Statistical framework for assessing health effects of
long-term exposure to multi-pollutant mixtures

— Dimension reduction of the multi-pollutant exposure surface based
on monitoring data

— Spatial prediction of the multi-pollutant exposure surface (focus on
low-rank spatial models)

— Health effect inference that accounts for uncertainty from prediction
and dimension reduction in the first two steps

e Application:

— Current: Annual averages from STN/IMPROVE + blood pressure from
NIEHS Sisters Study

— Planned: Time-adjusted concentrations from CCAR Project 1 + CVD
outcomes from MESA Air



Three step sequential procedure

: : : PC profiles + PC scores at
High dimensional P : : Health effect
o —> scores at monitor ——>  subject .
monitoring data : : analysis
locations locations

2. Multivariate
spatial prediction
modeling (low
dimensional)

3. Linear regression
(with measurement
error correction)

1. (Sparse) PCA

e Current progress and plan

— Steps 1 + 2: Predictive sparse PCA (Jandarov/Szpiro)

— Step 2: Low-rank version of common component model for co-kriging
(Bergen/Szpiro)

— Step 3: Measurement error correction with multiple spatially
misaligned pollutants (Bergen/Szpiro)



See: Roman Jandarov slides

Review of sparse PCA

Predictive sparse PCA algorithm

Implementation details

Application to national air quality monitoring data (CSN+IMPROVE)



Three step sequential procedure

: . : PC profiles + PC scores at
High dimensional P . . Health effect
. —>| scores at monitor ——> subject .
monitoring data . . analysis
locations locations

2. Muultivariate
spatial prediction
modeling (low
dimensional)

3. Linear regression
(with measurement
error correction)

1. (Sparse) PCA

e Current progress and plan

— Steps 1 + 2: Predictive sparse PCA (Jandarov/Szpiro)

— Step 2: Low-rank version of common component model for co-kriging
(Bergen/Szpiro)

— Step 3: Measurement error correction with multiple spatially
misaligned pollutants (Bergen/Szpiro)



Multivariate spatial prediction

* Previously discussed options
— Unlinked models for each pollutant: kriging or low-rank splines

— Linked models for multiple pollutants: co-kriging or splines with
correlated coefficients

 None of the existing models are quite what we want

— Co-kriging models only allow sharing information for spatial smoothing,
not GIS covariates

— Full-rank models are difficult to incorporate in predictive sPCA and
measurement error correction

— Straightforward correlation between spline/GIS coefficients does not
accommodate pollutants sharing some, but not all, spatial structure

 Proposed new method (LR-CCM)

— Low-rank version of common component co-kriging (Diggle and Ribeiro)

* Essentially a clever low-rank spline model with correlated coefficients



Potential roles for LR-CCM

Enhance predictive sparse PCA (steps 1 and 2) by linking spatial
models for individual components

— Requires two (non-trivial ) generalizations of predictive sparse PCA: L?
penalty on 8 and joint selection of multiple PCs

Broaden applicability of multivariate measurement error
correction (step 3) by including linked prediction models

— We will see that bias correction fundamentally depends on covariance
of coefficients in prediction models (conditional on penalty parameters)



Three step sequential procedure

: . . PC profiles +
High dimensional :
. —> scores at monitor ——>
monitoring data .
locations

PC scores at
subject
locations

Health effect
analysis

2. Multivariate

1. (Sparse) PCA

dimensional)

e Current progress and plan

— Steps 1 + 2: Predictive sparse PCA (Jandarov/Szpiro)

spatial prediction
modeling (low

3. Linear regression
(with measurement
error correction)

— Step 2: Low-rank version of common component model for co-kriging

(Bergen/Szpiro)

— Step 3: Measurement error correction with multiple spatially

misaligned pollutants (Bergen/Szpiro)




Measurement error correction

By the time we get to health effect estimation in Step 3, we will
have already

— Reduced the dimension of the exposure surface from p to k

— Used spatial modeling to predict the kK unmeasured exposure scores at
subject locations

Ideally account for uncertainty from both of these steps

Dealing with dimensions reduction step conceptually awkward
— We are not assuming a true latent reduced dimension exposure

— Interpretation of regression coefficients changes with different reduced
dimension representations

We focus on measurement error from spatial misalignment,
taking the dimension reduction as given



Relationship with previous
measurement error work

Previous presentation on measurement error (Bergen, 2012
CCAR SAC in Seattle)

PM, . components (S, Si, EC, OC) and carotid intima medial
thickness (CIMT) in MESA

— Separate analyses for each component
— Full-rank universal kriging prediction models

— Computationally efficient parameter bootstrap (PB) approximates
parametric bootstrap; version of simulation extrapolation (PB-SIMEX)

Crucially, assume kriging model corresponds to a random
spatial exposure surface in the data-generating mechanism

— Extension to multivariate analyses is “straightforward” but also
“problematic” (Szpiro, 2012 CLARC meeting in Boston)



Extending to multi-pollutant
framework

e To extend parametric methods, we “just” need to specify a
multivariate exposure model and the corresponding health model

— Inference by parametric bootstrap works as in single-pollutant case

e However ...

— The assumption that the single pollutant exposure surface is random is not
particularly plausible

— Extending this to multiple pollutants is even less plausible, and requires a
fairly good model for how the pollutants are linked



Semi-parametric measurement error
framework

e Assumptions about randomness

— Regard the exposure as an unknown spatial surface, but one that is fixed across repeated
experiments

— For multiple pollutants, we have multiple surfaces that are likely to be correlated, but we
do not need to correctly model the correlation

— Subject and monitor locations are what change across experiments

e Exposure modeling by low-rank penalized spatial models

— With sufficient degrees of freedom and well chosen penalty, works essentially as well as
full-rank modeling

— Extension to multiple pollutants is conceptually straightforward; can use linked exposure
models (i.e., borrow information between multiple pollutants), but this is not essential

— Asymptotic analysis is tractable

— Connects well with predictive sPCA



See: Silas Bergen slides

Measurement error with spatially misaligned data and penalized
regression exposure model

Bias estimate that accounts for penalty parameter, use for
— penalty parameter selection
— post-hoc bias correction

Bootstrap standard errors

Simulation studies

Application to Sister Study blood pressure analysis
Plans for extension to multiple pollutants



Summary of methods development

: : . PC profiles + PC scores at
High dimensional P : . Health effect
. —> scores at monitor ——>  subject :
monitoring data . . analysis
locations locations

2. Multivariate
spatial prediction
modeling (low
dimensional)

3. Linear regression
(with measurement
error correction)

1. Sparse PCA

e Current progress and plan

— Steps 1 + 2: Predictive sparse PCA (Jandarov/Szpiro)

— Step 2: Low-rank version of common component model for co-kriging
(Bergen/Szpiro)

— Step 3: Measurement error correction with multiple spatially
misaligned pollutants (Bergen/Szpiro)



A novel principal component analysis for
spatially-misaligned multivariate air pollution
data

Roman Jandarov
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23 July 2013



Objective

» This talk: Develop a multi-pollutant exposure model

» Estimate health effect of multi-pollutant exposure on blood
pressure (using Sister Study data)

» Generalize the methodology to data from Project 1



Description of multi-pollutant data

» Multi-pollutant data from EPA for 2009-2010

» Monitors are dispersed throughout the lower 48 states
» Measured pollutants (P4, ..., Pn):
» Particles: PM25, PM10
» Gases: NO2, NOx, SO2, 03, EC, OC, SO4, NO3
» Elements: Al, As, Br, Cd, Ca, Cr, Cu, Co, Fe, K, Mn, Na, S,
Si, Ni, V, Zn

» GIS covariates and coordinates at monitor locations

» Let Z be a matrix of 30 PCs from geographical covariates
and thin-plate splines from location coordinates
» Use Z for prediction



Data for health analysis

» Y - blood pressure
» Data on Y and subject-specific covariates from NIEHS
Sister Study data (cohort study on risk factors for breast
cancer)
» > 50,000 sisters of women with breast cancer enrolled

from across the U.S.
» Early analysis: association between PM2.5 exposure and Y

(Van Hee et al, in preparation)



Challenges

» Dimensionality of multi-pollutant data

» General health model is not practical

m
Y =0+ Z B1P; + interactions + covariates + ...
=1
» Pollutant concentrations are potentiality correlated
» Large number of main effects and interactions: hard to
estimate and interpret
» Spatial misalignment of exposure and subject locations

» Naive approach: one may need to build m exposure models
to predict (P4, ..., Py) for health analysis



A possible solution

1. Dimension reduction
» Compute first few principal components of multi-pollutant
data
2. Predict scores obtained from principal components at
participant locations using GIS covariates and splines
3. Fit a health model with smaller number of variables
» Interpret coefficient of the model to identify important
mixtures
This talk: Steps 1 and 2: Dimension reduction and
prediction



Review of principal component analysis

Principal component analysis (PCA) is a popular
dimension reduction technique.

A version of unsupervised learning

Goal of PCA: Reduce the number of variables of interest
into a smaller set of components

PCA transforms the original variables into a new set of
components (linear combinations of originals) equal to the
number of original variables



PCA: Example

Xy

» Let X be a n x p matrix with standardized columns
» PCA finds direction v4 and v, (also called loadings)

» Principal components: PC1 = Xvy, PC2 = Xv,



v

v

v

v

Sparse PCA

Principal components (PCs) can sometimes be difficult to
interpret

Sparse PCA produces modified PCs with sparse loadings:
loadings with only a few nonzero elements

In sparse PCA, penalty parameter, A, controls sparsity of
loadings.
In the context of spatial misalignment:

» sPCA: )\ is chosen to maximize predictability of pollutants
from principal scores (obtained by projecting X onto v at
monitor locations).

» sPCA-S: )\ is chosen to maximize spatial predictability of
principal scores.



Issues with sparse PCA: Bad predictions

Prediction of Principal Scores

PC1:R2= 83 PC2:R2= 20 PC3:R2= 18

Penalty optimized to predict pollutants: principal components
are difficult to predict (by Universal Kriging)

10



Issues with sparse PCA-S: Bad predictions

Prediction of Principal Scores

PC1:R2= 87 PC2:R2= 83 PC3:R2= 75
N - -
s ¢ R
- o g 2<)
s
£ o R s s
3 g M i
i By 3
b ¢
? v ?
T ]
4 3 2 1 o 1 2 3 4 2 [ 2 4 10 8 6 -4 2 o 2 4
Observatons Observatons Observatons

Penalty optimized to predict PCs: principal components are still
difficult to predict (by Universal Kriging)

11



New approach: Idea

» We want a sparse PCA algorithm that results in principal
components that can be predicted well

» Develop an algorithm that forces PCs to be close to spatial
covariates

192



Low rank approximation to find PCs

First, find (uy,Vv4), s.t. [|uy|| = 1 that minimizes
X —av]|

Define PC1 by uy = uy * ||v4||. Loadings by v{ = vy /||v4]|
Subsequently, find (uk, Vi) by approximating the
corresponding residual matrices. Define corresponding
PCs and loadings.

Sparse PCA (Shen and Huang, 2008):

Minimize a function of the form ||X — uv’|| + Py(V), where
Py () is an Ly penalty parameterized by A

13



Motivation: predictive sparse PCA (P-sPCA-S)

» Recall: Z - matrix of PCs from geographical covariates
(and spatial splines)

» Modify sPCA-S so that our PCs can be predicted well by Z
(PCs ~ Z3 by u = Zp).

» At first step of the algorithm, minimize the following with
respect to 3 and v (using a fast alternating algorithm):
X —Z3vT|| + Py(V) with constraint ||Z3]]2 = 1

» Subsequent steps are based on using residual matrices
(X —2ZpvT)

» Choose penalty parameter to maximize predictability of
scores

14



Algorithm and definitions

. Obtain #s and vs

s
(vl
. PC: u = XV1 T, Uo = XV2T,

(not observable at subject locations)

. Loadings: v =

. PC proxy:

U1 proxy = £B1, Uz, proxy = £B2, ...

(observable at both monitor and subject locations)

. Prediction using regression calibration for each PC:
» Regress PC on PC proxy (all slopes < 1)

» Use observed values of PC proxy to predict PC at subject
locations

15



Predictive sPCA: Predictions

Prediction of Principal Scores

PCl1:R2= 94 PC2:R2= 93 PC3:R2= 93
e , LIS S
t2 e o : »
A X o0 2 1 L .
Observations Observations Observations

Obtained principal components can be predicted well

16



Predictive sPCA - S: Loadings for 3 PCs

pci|  pc2|  pc3
Mn 0 0 0
ca 0 0 0
Na 0 0 0
si 0 0 0
Al 0 0 0
cr 0 025 006
Fe 0 014 0
Cu 0 0.4 0
K 0 04 o011
Zn 011 034 024
v 0 037 0
Br 022 031 026
s 011 0 076
oc 0.45 02 026
As 0.47 03 015
EC 049 032 014
PM25 051 015 042




Prediction of pollutants from three PCs

PCA-based Individual
Regression |

sPCA | sPCA-S | P-sPCA-S Splines UK
Mn 0.88 0.47 0.44 0.45 0.29
Ca 0.45 0.11 0.14 0.53 0.49
Na 0 0.05 0.1 0.52 0.5
Si 0.74 0.09 0.12 0.59 0.59
Al 0.66 0.07 0.11 0.59 0.59
Cr 0.34 0.08 0.6 0.62 0.52
Fe 0.34 0.71 0.66 0.67 0.57
Cu 0.41 0.43 0.78 0.65 0.58
K 0.59 0.56 0.7 0.7 0.62
Zn 0.1 0.58 0.72 0.73 0.7
Vv 0.33 0.36 0.65 0.79 0.8
Br 0.74 0.87 0.81 0.77 0.84
S 0.54 0.73 0.9 0.9 0.97
ocC 0.82 0.95 0.89 0.87 0.86
As 0.84 0.86 0.91 0.89 0.87
EC 0.86 0.9 0.85 0.91 0.88
PM25 0.87 0.95 0.9 0.91 0.93

Poor predictions from
Regression and UK

sPCA is better than sPCA-S
and P-sPCA-S

P-sPCA-S places zeros

P-sPCA-S is better than
sPCA and sPCA-S

All methods are close

18



Predictive sPCA (no penalty): Loadings

P-sPCA with penalty P-sPCA without penalty

pci|  pc2|  pc3|  pci] pc2|  Pc3
Mn 0 0 0 02 01 0247
ca 0 0 0 01 05 0129
Na 0 0 0 0 0.1 0.8
si 0 0 o| -01 06  -0.05
Al 0 0 0 0 06  -0.05
cr 0 025 006| 025 002 009
Fe 0 014 0| o024 02 0153
cu 0 0.4 o| o2 001  -001
K 0 04 011 026 01 -015
Zn 011 034  024| 028 002 0179
v 0 037 o| 025 005  -0.42
Br 022 031  026| 029 01 -0.08
s 011 0 076| 026 0.06 0
oc 0.45 02 026 03 01  -0.04
As 0.47 03  015| 031 008  0.046
EC 049 032 014 032 0.06 0
PM25 051 015  042] 031 001 -0.02




% -4 -2 0 2 4 6 8

Predictive sPCA (no penalty): Predictions

Prediction of Principal Scores

PCl1:R2= 93 PC2:R2= 61 PC3:R2= 63
357 7 i
A 7

il o] %
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Summary of the approach

» Developed by adding a constraint to the traditional sparse
PCA

» Results in improved predictability of PCs:

PC1 PC2 PC3

Sparse PCA (penalty maximizes pollutants) 0.83 0.20 0.18
Sparse PCA -S (penalty maximizes scores) 0.87 0.83 0.75
Predictive sPCA -S (penalty maximizes scores) 0.94 093 0.93

» Can be used to predict most of the original pollutants well

21



Current and future work

» Current work:
» Additional penalty parameter to penalize regression
coefficients 3 can be added

» Number of principal components to use in further analysis
» A simulation study

» Interpretation of obtained mixtures

» Loadings are not orthogonal
» Principal components are correlated

» Health model analysis
» Future work:

» Spatial all-at-once dimension reduction approach (reduced
rank regression)
» Generalization of methods to Project 1 data

29



Thank you!
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Background: 2-stage air pollution epidemiology
studies

Goal: Assess association between long-term air pollution
exposure and continuous health outcome

Exposures at subject locations are unobserved
Stage 1: Exposure modeling
o Build exposure models using monitoring data at, e.g., EPA
AQS monitoring locations
e Predict at subject locations
Stage 2: Health modeling

o Use predicted exposures in health model
e Measurement error



Stage 1: Exposure modeling

e Full-rank models (e.g. universal kriging, full-rank thin-plate
splines)
e Can be thought of as penalized regression with same
number of basis functions as monitoring locations
e Can be computationally demanding
e Standard asymptotics don’t apply: number of exposure
model parameters increases with sample size

e Low-rank models (e.g. low-rank kriging, thin-plate
regression splines)
o Similar to full-rank, but with fixed number of basis functions
e Good approximation to full-rank models
e Penalization ()\) necessary if number of basis function large
relative to sample size



Stage 2: Measurement error

What happens?

e Small A\ = more variable exposure model coefficients
“Estimation error”

Large A\ = smoother predicted surface

“Smoothing error”

Both errors can bias health effect estimate, inflate its SE



Where are we headed?

1. Estimate bias as function of A

2. Choose A to balance bias from smoothing and
estimation error

3. Correct for residual bias



Modeling assumptions

Health model:

Y =Bo+Bx +8IZ +¢

Do not observe x’ = ®(s’) + 7 at subject locations s’

Observe locations x = ®(s) + n at monitoring locations s

s, s i G(+) for some unknown G(+)

Also observe r(s), r(s’) (geographic covariates, spatial splines)



Penalized exposure model

For A\ > 0, positive semi-definite D:
1< 2
4, = argmin " > (x,- - r(s,)Ta) +20'Do
0 i=1

Note that 4, estimates ), where:

4 = argmin /(x —1(s)70)?dG(s) + \0" D8
;

Smoothed surface at subject locations: ¥(s’) vy

Observed predictions: r(s')74,



Measurement error
X 1) 5, = (X =0 )+ (H) 1 1))
= u3(s) +uk(s)
us: Smoothing error

o Difference between true surface and surface smoothed with infinite n
e Large A\ = larger smoothing error
e Reminiscent of Berkson error

ut: Estimation error

e Error from having finite n to estimate vy
e Small A = larger estimation error
e Reminiscent of classical error

Both types can cause bias: E(3) = 8 + 8¢5 + By&



E(B) = B+ By + Bk

Bias from smoothing error:

Smoothing error (x — r(s)7v,) becomes residual in
health model
e A=0:
« Smoothing error is uncorrelated with r(s) vy
« No bias (y§ = 0)
A>0:
« Smoothing error is correlated with r(s) 7y,
* “Omitted variable” bias (1§ # 0)

z/zf estimable with monitoring data, plug-in estimates of v,



E(B) = B+ By + Bk

Bias from estimation error:

P5 = v Ex(3x — ) + tr (A Cova(§x — 12))

As n— oo, pE — 0
Small A = large Covy(9, — )

Covy (¥, — v.) estimable by sandwich covariance in a way
that incorporates A

E\(4, — 7)) estimable by multinomial Taylor expansion

vy and Ay: functions of [ r(s)r(s)"dG(s),

[(x —r(s)Ty,)r(s)dG(s) and v,; estimable with monitoring
or subject data and plug-in estimates of v,



Measurement error correction
1. Select penalty parameter (), using standard approach
(e.g. REML) or to optimize health modeling*
2. Predict exposures and plug into health model
3. Correct for bias using estimates of ¥ and ¢£

4. Calculate SE using non-parametric bootstrap (re-sampling
subject and monitoring data), carrying out Steps 1-3 in
each bootstrap sample

*Choosing A to optimize health modeling:

(a) Derive estimate of Var(}3) valid for infinite n’ (accounts for
variability from estimation error only)

(b) Choose A to minimize infinite-n’ MSE of /3

(c) Aims to minimize bias from smoothing/estimation error
while paying attention to variance from estimation error



Simulations

4500 x 4500 grid

®(s): fixed realization of spatially correlated stochastic
process, plus 6 uncorrelated “geographic covariates”

Exposure models: low-rank kriging (Kamman & Wand,
2003); n=100; 10, 15, 20, 25 knots
Health models:

e Scenario 1: y' = By + 0.1x" + ¢

e Scenario 2: y' = g + 0.1x" + p1z' + ¢

e Z': thin-plate spline with 8 degrees of freedom

e n' =1000



Relative bias

Relative bias

0.2

0.1

0.0

-0.1
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---- g=15
q=20

- g=25

Relative bias
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-0.2

-0.3

— g=10
---- g=15
q=20

- g=25

0 2e-04 0.002 0.01 0.03

Scenario 1: No TPS in health model

0.002

0.01

0.03

Scenario 2: With TPS in health model
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Scenario 1: No TPS in health model
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Scenario 2: With TPS in health model

Relative bias
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Application: NIEHS Sister Study cohort

¢ Nationwide prospective cohort study
¢ Sisters of women with breast cancer
 VanHee et al: 109/ m? increase in annual avg PM, 5

associated with 1.2mmHg increase in SBP (95% CI: 0.5,

1.8)
e Our application: 9 northeastern states (nonlinear health
effect on national scale)

o Sister Study participants
* Monitoring locations




No penalty

———————— -————————- 20 knots

MSE
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Corrected analysis
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________ - 10 knots
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Summary

e Penalization necessary to reduce drastic bias/variance
introduced by estimation error

e Can estimate bias correction from available data; needed
for accurate Cl coverage

¢ Methods can be readily extended to multipollutant settings;
just need moments of (§, —y.)

e Multipollutant setting: 4, now vector of combined
coefficients for the different pollutants

e Immediate application: nonlinear association of SBP with

PM, 5 in nationwide Sister Study; must predict PM, 5 and
(PMg5)?
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Lemma 1: Suppose either Assumption 1 or 2 is met. Let r°(s) contain elements
ré(s) = ri(s) — ©(s) ok, where ¢, = argmin,, [(rc(s) — ©(s)"w)2dG(s) for
ke {1,...p+ q}. Let wi(s;) = re(s;)Tvx, WS(s;) = r°(s;)"4,, and

us(s) = ®(s) —r(s) v

_ Ju3(s)wg(s)dG(s)

W Ox = = e (s)2dGis)
B — B S wE(s1)wg(82)Covipr (W5 (81), W5 (s2))dG(81)dG(S2)

i < 5 “”) =2 (] wS(s)2dG(s))? (1+24)

J Vary (W5 (s))dG(s) J Epn=1(W5(s) — wg(s)) w5 (s)dG(s)
- f wg(s sz(S) (1 + >\) - f WA 2dG ) (1 + 21/’)\)
fUA 8) Efp+1 (W5 (8) — wg(s))ws (s)dG(s) _2fUA(S1)Wx(sz)COV[n*](Wf(deWf(sz))dG(SﬂdG(Sz}
T wi(s)2dG(s) (f wS(s)2dG(s))2
=mbg . pys

Estimable from available data
A=0 = 1, =0
Small A = large [ wi(s)?dG(s)
Small A = large Covi,«|(W5(s1), W5(s2))
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V .
jt% Cross-center collaborations

Center for Clean Air Research

Other EPA Clean Air Research Centers (CLARC:S)
 Emory/Georgia Tech (“SCAPE”)
e Harvard (“Harvard”)
e Michigan State/Michigan (“GLACIER”)

Collaboration specifics
e $50,000 per center per year
e Involves 2 or more CLARCs

Planning
* Discussed at the first CLARC annual meeting in May




jmﬂ UW CLARC collaborations

Center for Clean Air Research

e Mobile sampling in Atlanta (with Emory) — Tim
Larson, Mike Yost

« Toxicology (Michigan State) — Matt Campen

e EXposure measurement error correction (with
Harvard and Emory) — Adam Szpiro

o Satellite (remote sensing) data for PMzs (with
Emory and Harvard) — Paul Sampson

e [Chamber characterization] (with Harvard and
Emory) — Jake McDonald



Mobile & fixed site characterization in Atlanta

e With Emory (SCAPE) — Sept 2013

« 2-week sampling at central site and 20 (mobile and
passive) fuzzy points x 3 routes, incl 2 roadside gradient
routes + 3 fuzzy points with full instrumentation

e compare to CMAQ predictions (4 km grid,
downscaled to 250 m using LUR model)

e AImMS:
1. validate mobile fuzzy point measurements
2. complete another near roadway campaign



Animal toxicology

1. Michigan State (GLACIER) coarse PM human
experimental subject serum and BAL samples (R
Brook, U Michigan)

e Campen ex vivo endothelial cell assays

2. Campen collaboration with Jesus Araujo (UCLA
& GLACIER)
 HDL dysfunction & oxidized lipids on samples
from LRRI mouse studies



EXposure measurement error correction

e With Harvard and Emory
« Georgia birth cohort (low birth weight) and EPA PM2s

e Common PMz2s exposure predictions based on UW
spatio-temporal model

o 3 statistical approaches for measurement error

correction (with simulations for insight into differences):
e parameter bootstrap - UW
 simulation extrapolation - Harvard
e Bayesian — Emory



Satellite PM2.s estimation

e With Emory and Harvard

e Standard set of data for North Carolina, 2006-08,
3-km grid; MODIS AOD data downloaded

« 6 candidate models for PMas prediction
o Harvard x 2 (mixed effects, multi-level)
 Emory x 3 (spatial downscaler, mixed effects, CMAQ)
o UW x 1 (spatio-temporal model)
« assess added value of satellite data

e commons metrics for model evaluation
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